ragflow搭建笔记学习笔记
1.确保 vm.max_map_count
>= 262144
- (1) 查看
vm.max_map_count
值
>> sysctl vm.max_map_count
vm.max_map_count = 65530
- (2) 手动设置
vm.max_map_count
值为262144
>> sudo sysctl -w vm.max_map_count=262144
或者直接修改配置:/etc/sysctl.conf
# 1.修改配置
>> sudo vim /etc/sysctl.conf
vm.max_map_count=262144
# 2.打印配置使之生效
>> sudo sysctl -p
vm.overcommit_memory = 1
vm.max_map_count = 262144
kernel.core_pattern = ./core.%t
2.下载源码
>> $ git clone https://github.com/infiniflow/ragflow.git
3.使用预编译的docker镜像来启动服务
# 1.进入ragflow的docker路径
>> cd ragflow/docker
# 2.使用docker compose启动服务,可以使用CPU或GPU两种模式
## 2.1 使用CPU运行embedding和DeepDoc任务
# >> sudo docker compose -p ragflow -f docker-compose.yml up -d
## 2.2 使用GPU加速embedding和DeepDoc任务
>> sudo docker compose -p ragflow -f docker-compose-gpu.yml up -d
# 3.查看日志
>> sudo docker logs -f ragflow-server
____ ___ ______ ______ __
/ __ \ / | / ____// ____// /____ _ __
/ /_/ // /| | / / __ / /_ / // __ \| | /| / /
/ _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
4.登录RAGFlow管理页面
# 1.查询ip
>> ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.89.64 netmask 255.255.240.0 broadcast 192.168.95.255
inet6 fe80::215:5dff:fefc:a70c prefixlen 64 scopeid 0x20<link>
ether 00:15:5d:fc:a7:0c txqueuelen 1000 (Ethernet)
RX packets 135625 bytes 191103112 (191.1 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 72590 bytes 5389967 (5.3 MB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 81 bytes 8003 (8.0 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 81 bytes 8003 (8.0 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
# 2.web登录
http://192.168.89.64:80
5.配置 Model provider
右键单击右上角角色图标 -> "Model provider" -> 配置模型:
部署框架 | 插件 |
---|---|
ollama | Ollama |
Xinference | Xinference |
Qwen | Tongyi-Qianwen |
6.创建知识库
Knowledge Base
-> Create Knowledge base
-> 输入知识库名 -> Configuration
-> 按需配置模型参数 -> Dataset
-> Add file
添加知识库文件 -> Pasing Status
对上传文件解析
7.参考资料
- [1] ragflow